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Macroscopic glassy relaxations and microscopic motions in a frustrated lattice gas
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We study microscopic and macroscopic dynamical properties of a frustrated lattice gas showing the violation
of Stokes-Einstein law. The glassy behaviors are analyzed and related with experimental results in glass former
systems.@S1063-651X~97!50908-1#

PACS number~s!: 64.70.Pf, 64.60.2i, 81.05.Kf, 05.50.1q
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In simple liquids the connections between the times
macroscopic relaxations and the properties of microsco
particles motion are elucidated by the Stokes-Einstein r
tion that links shear viscosity and particle diffusivity. Rece
experimental evidence shows how such a relation is viola
in supercooled glass forming liquids. In these systems c
plex dynamical behaviors, which are distributed on ma
time scales, are supposed to be linked in a nontrivial wa
atomic motions of the liquid components@1,2#.

We face these questions in the context of a microsco
model recently introduced to describe some general feat
of glasses@3#. This model, which bridges spin glasses~SG!
@4# and site frustrated percolation@5#, consists of a lattice ga
model in which each particle contains an internal degree
freedom characterized by a spin variable. The spins inte
via quenched ferromagnetic and antiferromagnetic inte
tions randomly distributed like in the SG model. The mod
is described by the following dilute SG Hamiltonian:

bH52J(̂
i j &

~e i j SiSj21!ninj2m(
i

ni , ~1!

whereni50,1 are occupancy variables that have an inter
Ising degree of freedomSi61, the e i j 561 are quenched
random lattice interactions, andm is an adimensional chemi
cal potential, which plays the role of the inverse of the te
perature 1/T.

When all the sites are occupied (ni51), i.e., if m→`,
this model is the standard6J Ising spin glass. In the limit
J→` it describes a frustrated lattice gas where two nea
neighbor particles can be occupied only if their internal va
ables satisfy the constrainte i j SiSj51. Since in a frustrated
interaction loop the spins cannot satisfy all the couplings
this model particle configurations in which a frustrated lo
@4# is fully occupied are not allowed.

In a liquid the internal degrees of freedomSi may be
associated, for example, with the internal orientation of p
ticles, but, more generally, they represent microscopic qu
tities that probe local effects of ‘‘frustration.’’ Geometrica
hindrance in the liquid implies the existence of loops th
cannot be fully occupied, in correspondence with the fr
trated loops in the model~see@6#!.

In the mean field@7# the static properties of the mode
show two transitions: one at a valuemc , which signals the
appearance of metastable states, and a second therm
namic transition at a higher valuem0 ~corresponding to a
571063-651X/98/57~1!/39~4!/$15.00
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lower temperature!. These properties recall those of th
p-spin glass models@8#. These models have received r
newed attention, as their dynamical behavior in a mean fi
is described by the same equation as those of the mode
pling theory for simple liquids@1#. Moreover, the dynamica
transition coincides with the first transition from the stable
the metastable state. The similarity in the static propertie
the two models suggests that the dynamics may also be
same. Therefore, we expect for the lattice gas model~1! in a
mean field a dynamical transition atmc with a diffusion co-
efficient vanishing with a power law.

We have studied the model~1! in d53 dimensions in the
limit J→` by means of Monte Carlo methods. We use
standard Monte Carlo dynamics, in which particles diffu
and spins are updated with Metropolis spin flip. Some res
on the static and dynamic properties of the model have b
previously reported@3#. Here, we focus mainly on the rela
tion between the diffusion coefficient and the characteris
relaxation time.

Our data are consistent with the following picture: we fi
a regionm,mp ~high temperature! where the model behave
as a normal fluid characterized by single exponential rel
ation and normal diffusion. The value ofmp is numerically
consistent with the percolation threshold for the partic
system. For valuesmp,m,m0 the density-density time de
pendent autocorrelation function exhibits a two step rel
ation, corresponding to thea and b relaxation times. The
value m0 corresponds to the spin glass transition charac
ized by the divergence of the nonlinear susceptibility a
moreover, where the diffusion coefficientD(m) vanishes@3#.
In this region D(m) exhibits a net cusp atm*
(mp,m* ,m0). Both the diffusion coefficient and thea re-
laxation time exhibit a power law behavior form,m* with a
sharp crossover to an Arrhenius or Vogel-Fulcher law
m.m* . This crossover can be interpreted in the followin
way @9#. In a mean field the dynamical transition occurs
the same temperature where the static exhibits a trans
from a stable to a metastable state. Once in the metast
state the system is trapped forever due to the infinite lifeti
of the mean field metastable state. In finite dimension
metastable state has a finite lifetime, and the system does
reach a full arrest.

The value ofmp is located roughly where theb relaxation
and thea relaxation time starts to separate and where
relation between thea relaxation time and the diffusion co
efficient violates theStokes-Einstein law, as observed in rea
structural glasses@10–14#.
R39 © 1998 The American Physical Society
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We have considered a cubic lattice of linear siz
L58, 12, and 16 with periodical boundary conditions, fixin
J510 and usingm as a variable. Our results do not chan
for J510 000, showing that we are effectively close to t
value of J5`. As stated, thedynamic in our model is a
standard Monte Carlo~MC! dynamics, in which particle dif-
fuse and spins are updated with Metropolis spin flip. T
system is equilibrated after successive thermalization
higher and higher values ofm for about 106 MC steps at each
fixed value of external parameters. The measures are
taken up to about 108 MC steps, for a given random configu
ration of the couplingse i j . We are aware that in the dee
glassy region~abovem;5) our numerical results may b
only indicative due to the required very long simulatio
times, but this does not change the overall picture descr
above.

We have calculated the density-density time depend
autocorrelation functions,

Ck~ t !5^rk~ t !r2k~0!&/^rkr2k&. ~2!

Here,rk is the Fourier transform on the lattice of the dens
rk(t)5(1/N)( r 50

L21r(r ,t)cos(qkr), where r(r ,t) is the par-
ticle density, at timet and at a distancer from a median
plane in our cubic lattice of sizeL, andqk5(2p/L)k, with
kP$1,2, . . . ,L/2%. Times are measured in such a way th
t51 corresponds on average to the time to update once
the degrees of freedom in the system. We have also ca
lated the square magnetization time dependent autocor
tion function and found that behaves in a similar way.

As anticipated above, the system at lowm ~i.e., low den-
sity! behaves as a normal liquid, with exponentially deca
ing time correlation functions~see Fig. 1!: Ck(t);
exp@2t/t0(k)#. The characteristic timet0(k), excluding finite
size effects, is inversely proportional tok2,t0(k);1/
D0k21t` .

FIG. 1. Fourier transformed density correlation functionCk(t)
for k5L/4, as a function of timet for several values of the chemica
potential m (m522.0,3.0,5.0), in a system of linear sizeL516
and coupling constantJ510. Superimposed are the short time e
ponential and the long time stretched exponential fits~see text!.
Inset: The exponentb of the stretched exponentials of the long tim
fits of density correlation functions reported in the main frame, a
function of m.
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For larger values ofm ~larger density!, even if the short
time decay (t<1) is still exponential, the long time relax
ation (t@1) may be reasonably fitted by the Kohlrausc
Williams-Watt stretched exponential form~see Fig. 1!

Ck~ t !;Bexp$2@ t/t~k!#b%, ~3!

with b a function ofm ~see Fig. 1!, as typically occurs in SG
@16#. This implies that the MCT prediction oftime-
temperature superposition relation@1# is verified only in
very narrow density intervals.

Close tomp;0.75 (rp;0.38), we observe the separatio
of short times (b-process! and long times (a-process! relax-
ation. For an estimate of the long time relaxation, thea
relaxation, in principle we could uset(k) from the fit of Eq.
~3!. However, due to the sensitivity oft(k) on the details of
the fit, such as for example the region chosen for the
following Ref. @15# we define thea relaxationta(k;m) as
the time such thatCk(ta)51021. For m,m* ;2, ta(k) is
well fitted with a power law behavior~see Fig. 2! @17#

ta~k;m!5Ak~mc2m!2g1Bk , ~4!

with g56.8 and mc55.6 almost independent o
k (Ak57000 andBk50.5 for k5L/4). Also the timet0(k)
of the initial exponential-like decay follows the same pow
law dependence up tomp , and then saturates to a finite valu
exponentially withm.

For m.m* , while t0(k;m) saturates,ta(k;m) is reason-
ably fitted by an Arrhenius behavior divergence~see Fig. 2!

ta~k;m!5akexp~m/ma!, ~5!

with ak50.7 andma50.4 for k5L/4.

a

FIG. 2. The short time exponentialb-relaxation timet0(k)
~circle!, and thea relaxationta

e[ta / ln(10) ~square!, of density
correlation function~for k5L/4), as a function ofm, for a system of
linear sizeL516 andJ510. Continuous curves are power law an
Arrhenius fit described in the text. The point where the lowm
behavior fails is located aroundmp;0.75. Inset: The inverse o
diffusivity, D(m), as a function ofm for the same system. Supe
imposed are the power law and Voghel-Tamman-Fulcher fits
scribed in the text. The cusp inD(m) individuates a characteristic
valuem* ;2.0 (m* ,m0, wherem0 is the SG transition!.
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The crossover from a power law behavior forecasted
MCT or spin glass mean field theory to an Arrhenius~or
Vogel-Tamman-Fulcher in fragile liquids! behavior fora re-
laxation times, is typically observed in real structural glass
too @2#.

It is interesting to compare the anomalies of the autoc
relation functions described above to microscopic part
diffusion. Here, frustration may have a strong effect on p
ticles. We have calculated the particle mean square displ
ment @3# R2(t)5^(1/N)( i@r i(t)2r i(0)#2&. For m,mp we
find a Brownian typical linear time behavior. Form.mp , in
the intermediate time region, we observe a subdiffusive
gion with an inflection that becomes more evident asm in-
creases~see Fig. 3!.

The linear asymptotic behavior ofR2(t) defines the dif-
fusivity D. This shows an apparent cusp atm* ;2 (r* ;0.5)
and an abrupt change in behavior, as shown in Fig. 2. Be
m* , it is possible to fitD(m) with the power law given in
Eq. ~4! with the sameg andmc ~see Fig. 2! found studying
density relaxation times.

The valuemc from the power law fit corresponds to th
characteristic temperatureTc of mode coupling theory@1#, or
to the ‘‘dynamic transition’’ of the mean-field theory o
p-spin glasses@4,8#. Abovem* the best fit forD is obtained
using a Voghel-Tamman-Fulcher~see Fig. 2!,

D21~m!5ADexp@d/~m212m1
21!#, ~6!

with AD517, m1511.4, andd50.3, for the system of size
163. However, an Arrhenius fit~i.e., m1→`), as that found
for ta of a relaxation, is just slightly worse,

D21~m!5AD8 exp~m/mD!, ~7!

FIG. 3. Particle mean square displacementR(t)2 as a function
of time in a system of linear sizeL516, for J510, and for
r50.088,0.271,0.440,0.581,0.674~higher curves correspond t
lower densities!.
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whereAD8 52.72 andmD51.1. A crossover from power law
to Arrhenius~or Voghel-Tamman-Fulcher! behavior is also
observed in real experiments@2#.

In our model the densityr* corresponding tom* , where
the Arrhenius region sets in, is signaled by a local minimu
in the static structure factorS(k;r), as a function ofr. Our
observations indicate that the diffusivityD goes to zero in
the region where the static SG transitionm0 should be lo-
cated as signaled by the divergent nonlinear susceptib
xSG. However, it is difficult to numerically establish wher
exactlym0 is located (m0>5.5) @3#. As in real glasses, how
ever, there is no divergence of density fluctuations.

We compare now the diffusion coefficientD and thea
relaxation timeta . In a normal liquid the diffusion coeffi-
cient and the viscosityh are related by the Stokes-Einste
relation ~SE!: hD5CT, where T is the temperature in
Kelvin andC a constant@19#. In our system it is not possible
to directly define a viscosity, but due to the Maxwell relatio
h is proportional to the time scale of the asymptotic rela
ation ta . We find that the producttaD is not a constant
varying the potentialm, as shown in Fig. 4. Studying
ta(m)D(m), three regions emerge, separated by the val
of mp andm* . A similar separation in three different region
is found in real experiments on colloidal suspensions@14#,
where, plotting the producthD as a function of the volume
fraction, a behavior is found close to that depicted in t
inset of Fig. 4.

It has been suggested that the departure from the Sto
Einstein relation, in glass forming liquids@10#, could be de-
scribed by the following relation:D215Khj. To check if
such relation holds in our model we have plotted~see Fig. 4!
1/D as a function ofta(k5L/4). By assuming

D215Kta
j , ~8!

we find for m<mp j51 ~as in usual SE!, and for m>m*
j;0.3. This last value ofj for m>m* is consistent with
Eqs.~5! and ~7! andj5ma /mD .

FIG. 4. The diffusivityD as a function of thea-relaxation time
ta . As in real experiments three different regions appear. The
perimposed curves are fit with the generalized fractional Stok
Einstein lawD21;ta

j . Inset: The product of diffusivityD(r) and
of a-relaxation timeta(r) as a function of densityr.
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Experiments in glass forming liquids@10–13# indicate
that the exponent isj<1, ranging in a broad interval de
pending on the system~for instance, ino-terphenyl using the
rotational diffusion coefficient,j50.28 is found @10#, in
PMMA j50.69 @13#!. It is striking that the data on
o-terphenyl@10# not only exhibit the same exponentj found
here, but the rotational diffusion coefficient also sho
a cusp as function of 1/T and the appearance of sever
regions, analogous to those depicted respectively in Fig
and 4.
J.

.
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l
2

In conclusion we have studied the macroscopic relaxa
and microscopic diffusive properties of the frustrated Isi
lattice gas introduced in@3#. Many connections have ap
peared with the physics of real glass forming liquids rang
from the anomalies in the density relaxations, to those
diffusivity, to violation of Stokes-Einstein law@1,2#.

The authors are grateful to Dino Leporini for useful di
cussions. This research has been partially supported b
grant from CNR.
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